## EXERCISES OF MATRICES OPERATIONS - SOLUTIONS

Throughout, we assume that the dimensions of the matrices in this note make sense.

Question 1. Which of the following statements must be true?
(1) F. Counterexample: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(2) F.
(3) F. Counterexample: $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
(4) F. Counterexample: $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(5) F. Counterexample: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
(6) F. Counterexample: $A$ is the $n \times n$ with 1 on the $(n-1)$ entries to the right of the main diagonal and zero elsewhere.
(7) T .
(8) F. $-A$ is still symmetric.
(9) F.
(10) T.
(11) F. Counterexample: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad C=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(12) F.
(13) T .
(14) F. Counterexample: $A=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(15) T.
(16) F. Counterexample: $A$ is a $3 \times 5$ matrix with rank 2 .
(17) F. Counterexample: $A=I_{n}$ and $B=-I_{n}$.
(18) T .
(19) F. Counterexample: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
(20) T.
(21) F. Counterexample: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(22) F. Counterexample: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(23) F. Counterexample: $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(24) T .
(25) T .
(26) T .
(27) T.

Question 2. If $A$ is row equivalent to $B$, then which of the following statements must be true?
(1) F. Counterexample: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
(2) T .
(3) T .
(4) F. Counterexample: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \quad b=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(5) T .
(6) T .
(7) T .

